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The vector potentials of the displacements of the general solutions of static Boussinesq and Papkovich problems are presented 
in a form which leads to the splitting of the vector equations of the potentials in cylindrical and spherical coordinates into two 
scalar potentials. The solutions of the equations of the scalar potentials for finite bodies of canonical form contain orthogonal 
systems of functions on the coordinate surfaces in the region occupied by the body considered, including its boundary surfaces. 
One thereby creates the prerequisites for converting the boundary conditions into infinite systems of linear algebraic equations 
after expanding the stresses or displacements, specified on the boundary surfaces, in orthogonal functions of the equations of 
the potentials. © 2001 Elsevier Science Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

We mean by the general solution of problems of the theory of elasticity in displacements the replacement 
of the Lam6 equation 

I - V 1 O2u 
(I + v)(I - 2v) grad divu 2(I + v-----) rot rotu = 3-~ (1.1) 

(v is Poisson's ratio, u is the dimensionless displacement vector, t is the dimensionless time, referred 
to l/c, I is the characteristic linear dimension and c is the velocity of sound in the elastic medium), by 
simpler equations for the vector and scalar potentials of the displacement vector u: by the vector and 
scalar wave equations in non-stationary dynamic problems, by the vector and scalar Helmholtz equations 
in stationary dynamic problems, and by the vector and scalar Laplace equations and by biharmonic 
equations in static problems. 

The general Boussinesq solution of static problems of the theory of elasticity can be reduced to the 
vector equation [1-3] 

V2V2G = 0 (1.2) 

Equation (1.1) (when ~2U/c)t2 ---- 0 )  is satisfied if 

! -2V 
u = ) - v  "---'---:graddivG-r°tr°tG2(I (1.3) 

The general Papkovich solution of static problems reduces to vector and scalar Laplace equations 
[1, 2, 4] 

V2B=0, V 2 * = 0  (1.4) 

while the displacement vector can be written in the form 

I 
u = B 4 ( I -v )  grad(rB+~) (1.5) 

Here r is the radius vector of the point at which the displacement u is defined. 
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262 L.I. Fridman 

Solution (1.2), (1.3) was obtained for the first time by Boussinesq [3]. Assuming the rectangular 
coordinates xl, x2, x3 to be dimensionless, the equilibrium equations in displacements, corresponding 
to vector equation (1.1), when taking volume forces into account, can be written in the form 

I ~A 
~ - V 2 u , + 2 ( l + v ) } X ,  =0, k=1,2,3 (1.6) 

1 - 2 v  Ox k 

Here A is the volume deformation, uk and Xk are the components of the vectors of the dimensionless 
displacement and the volume force respectively, and E is the modulus of elasticity. 

Boussinesq introduced three functions of the coordinates ~1, ~2, ~3 and represented the components 
of the displacements in the form 

bH + V2~k, k = 1,2,3 (1.7) 
uk = - 3x---~" 

Substitution of (1.7) into the system of three differential equations (1.6) leads to replacement of it by 
the following three equations 

V2V2~l/k = -2(i + v ) }  X,, k = !, 2,3 (1.8) 

Here 

2(I-v)V2H = (gxl V2~! + ~-~--2 V2¥2 +~X3 V2~1/3 

whence it follows that 

1 av2  v3/+a, n = - - - - - - ~  + + (1.9) 
2 ( ! -  ax 2 ~X 3 ) 

Here (I) is an arbitrary harmonic function. The advisability of retaining the function @ in expression 
(1.9) is extremely doubtful, since the overall order of Eqs (1.8) is quite high (see Section 5). 

WhenXk = 0, Eqs (1.8) correspond to vector equation (1.2), while relations (1.7), taking expression 
(1.9) into account when @ = 0, correspond to the vector equality (1.3). 

A similar solution of the homogeneous problem was published much earlier by Galerkin [5], pointing 
out, without proof, the generality of solution (1.2), (1.3). 

Solution (1.4), (1.5) was obtained by Papkovich [4]. A paper with a similar solution was later published 
by Neuber [6]. As Papkovich wrote [2, 4], solution (1.4), (1.5) was obtained earlier by Grodskii, but was 
published later [7]. 

Introducing the notation V2~tk = Bk (k = 1, 2, 3) and substituting it into relations (1.7) in the 
2 case of the homogeneous problem, when V//k = 0 (k = 1, 2, 3), we obtain, by substituting expressions 

(1.7) into (1.6) 

2(I - v)V2 H = ~ x l  "" ~-'~'- 2 ~X 3 

whence it follows that 

I 
H = 4(! - v) (xjBI + x2B2 + x3B3 + ~)  (1.10) 

where @ is an arbitrary harmonic function. The vector equation (1.5) corresponds to relations (1.7) if 
we take expression (1.10) into account. Hence, the general Papkovich solution reduces to four Laplace 
equations instead of three biharmonic equations in the general Boussinesq solution. 

Papkovich [2] gave a thorough analysis of the general Boussinesq, general Papkovich and some other 
solutions, found a relation between them and proved their redundant generality. In particular, he did 
not consider it necessary to retain the harmonic function @ in relation (1.5) to keep the solution general, 
but he retained it in order to make it easier to satisfy the boundary conditions. Unlike the general 
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Boussinesq solution the introduction of the harmonic function • into the general Papkovich solution, 
as can be seen from the following (Sections 2 and 3), is not only useful but also necessary. 

Solutions of specific problems of the theory of elasticity for the simplest finite bodies were constructed 
[1, 8, 9, etc.] using particular solutions of the equations of the displacement potentials. Complete solutions 
(a complete se of particular solutions) of the equations of the stationary dynamic problem of the theory 
of elasticity for finite bodies of canonical form in rectangular, cylindrical and spherical coordinates were 
given in [10, 11], which enable problems of the frequencies and forms of natural oscillations to be solved. 
The approximation of complex bodies by canonical bodies solves the important technical problem of 
calculating the natural frequencies of oscillations of the elements of structures using the equations of 
the theory of elasticity [12]. 

General solutions of static problems of the theory of elasticity by methods employed previously in 
[10, 11], can be reduced to a form which enables boundary-value problems to be solved for finite bodies 
of canonical form. A canonical body, as previously [10, 11], is a finite body obtained by the intersection 
of no more than three pairs of surfaces, where the surfaces of each pair belong to one of three families 
of coordinate surfaces. 

2. R E P R E S E N T A T I O N  OF THE G E N E R A L  S O L U T I O N S  IN 
C Y L I N D R I C A L  C O O R D I N A T E S  

A canonical body with dimensionless cylindrical coordinates p, q~, z is a body obtained by the intersection 
of cylindrical surfaces p = Pl and p = P2, the half-planes q~ = 0 and q~ = q00 and the planes z = 0 and 
z = z0 (Pl ~< P <~ P2, 0 ~< rp ~< rp0 , 0 ~< z ~< z0). A circular cylinder (01 ~< P ~< P2, 0 ~< z <~ z0) is also a 
canonical body. 

By analogy with the vector potential of transverse waves in the stationary dynamic problem [13], the 
biharmonic vector of the general Boussinesq solution can be written in the form 

G = ye~ + rot(¥.e~) (2.1) 

Here ez is the unit vector along the z axis, and ~ and ~g. are scalar functions of the coordinates. (The 
possibility of such an approach to static problems in cylindrical coordinates for the general Boussinesq 
solution was indicated previously in [14].) 

Substituting expression (2.1) into (1.2) we obtain 

VZV2¥ = 0, V2V2¥. = 0 (2.2) 

We introduce the notation 

I 01g _- F, V2¥,  m ¥2 (2.3) V2¥ = ~1/,, 2(I - v) Oz 

The displacement vector u, after substituting expression (2.1) into Eq. (1.3) and taking the notation 
(2.3) into account, is given by 

u = gradF +~1 ez + rot(~l/2ez) (2.4) 

Hence, the vector potential G of the displacements is replaced by scalar biharmonic potentials ~ and 
harmonic potentials ~2. 

Laplace's equation, like Helmholtz' equation in the stationary dynamic problem [10, 11], can be solved 
by the method of separation of variables. The parameters of the separation are chosen so that, of the 
three ordinary differential equations, two are the Sturm-Liouville equations and, with the appropriate 
boundary conditions, describe the Sturm-LiouviUe problem in the region occupied by the canonical 
body considered. An alternate choice of the separation parameters, giving three possible combinations 
of two variables, by means of which the Sturm-Liouville problem is solved, leads to the construction 
of solutions of Laplace's equations and of the biharmonic equation in the form 

~, E E R ~ , , . o .  +E  (') (') 
r a n  r a k  I n 

W2=y.~R(2) ! d u  m ! d u n  +X-x-'7(2) ! d u  m + ~ t ,  i d u  n 
--ra~ ~ ~ " k r ~  - - - -  Wk,~ - -  ~ tin ( 2 . 5 )  

m , ~t m dq~ v n d z  k ,n [ t , ,  dq~ t , on  
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(o) (o) ~ ( o ) .  V = Z Z (R~. + R~,. )u~v. + Z Y.(Zk~ + Z',. )u~ w,~ + T .Z  (~t. + i. )v.tt. 
m n  k m  / n 

Here  Um((P), th(z), wk~(p), ttn(P) are the eigenfunctions of the Sturm-Liouville equations 

(m - 1)n 
urn = cosla,nq), gt,. = ~ ,  m = 1,2 .... 

% 

(n - l)Tt 
u n = c o s v . z ,  u . = ~ ,  n = l , 2  .... (2.6) 

Zo 

as. 
w,= = ~ (p 2h,m )J, (ph,m)- ~ (p2h,m)y, (Ph,m) 

fit. = Re /ix (PV. ), t2t. =Im/ix(PVn) 

d t 2 t n  . . . d t l t  n . . . 
t in  = --~-p (P2Vn)t, tn(PVn)----~-p (P2Vn)t2tn(pv.). n > 1 (2.7) 

t n = cos "Ctl In , "Ctl = In(p2/Pt)' 

Y~t and J .  are Bessel functions of the first and second kind respectively of order  Ix., (the subscript m is 
omitted for brevity), Ii~ is the modified Bessel function of imaginary order  ixi., i is the square root of 
-1,  and "r/. is the order  modulus (the subscripts l and n are omitted for brevity). 

The eigenvalues of  the Sturm-Liouville problem h ~  and xt. (n > 1) are found respectively from the 
equations 

d W k m  d t l n  
(p i )=0 ,  k = l , 2  .... (h l l=0 ,  w i t= l ) ;  --~-p(pj)=0, n > l  (2.8) ap 

The functions Um and ~ form an orthogonal system of functions on the cylindrical surfaces p = const, 
including the cylindrical boundaries p = Pl and p = P2 (0 ~< z ~< z0, 0 ~< ~ ~< ~P0). 

The functions w ~  satisfy the orthogonality condition 

pz 
j wk, n wtmPd p = 0, k ~ ! 

Pf  

and, together with the function Urn, form an orthogonal system of functions in the z = const planes, 
including the plane boundaries z = 0 and z = z0 (Pl ~< P ~< Pz, 0 ~< q) ~< %).  

The functions tt. satisfy the orthogonality condition 

P2 I 
~ ttnt,, dp = O, l * k 

and together with the functions Vn form an orthogonal system of  functions in the half-planes tO = const, 
including the boundaries (O = 0 and (p = % (Pl ~< P ~ P2, 0 ~ Z ~ 2:0). 

The procedure for separating the variables in Laplace's equation also gives a third function, 
corresponding to each of the three combinations of two orthogonal functions 

R,.(i) = A ( j  I , (pv.)  + B ~  K,(pv.)  n > l 
. -,.. I,(P2V.) K~t(P=V.)' 

Rm(J) a(J)nlam .t. ~( j )e , - la , ,  t = re>l ;  " ~ m l  I ~ T U m l  I "  ' 

Z,()' = C~ j) exp[-h,m (Zo - z)] + DI j) exp(-h,mz), 
m 

dD(J) ~(J) t. = "--I. exp[-xt.(q)o - q))] + O~. j) exp(-~t.~0), 

j - -O,  1,2 

RI¢ ) -- . ,(" l . p  + Bl¢ , 

zl ,) = cli)  + ) 

I1 =="11 ~ Y ' V l l  
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where I~t and K~t are modified Bessel functions of the first and second kind of order ]dr, m (the subscript 
m is omitted). 

In the solution of the biharmonic equation, the third function 

, a 

g ' "  p dp ' 

| 27 (I) 
~Z-, km Zkm = - ~ Z 

2hk,,, dz 

I "4dh(1) w,~i.-/n 

= -  q '  d,p' 

Rml =4(I_g.L)L v m, + P 3 T )  

1 z2Z m +3z3 dZ~'? 
Zll = - ~  iI dz 

I d@l|l ) ! a2dh(I) a,,, = - p . . . . , ,  
dcp 

corresponds to these combinations of orthogonal functions, where .A(J).mn, ~mn'l:l(J) ""mk'r'O') "-',a,,n(J) E(~), 
O/;,~,'0 = ~,, % % are s~quences ~ a/dtrrary t,~Jm'ran~. 

Introducing into (2.5) the conditions for the displacement potentials to be periodic with respect to 
the coordinate tp, we obtain the displacement potentials for a circular cylinder 

= l Y . R ~ , , u n + ~ Z ~ w k m ) c o s ( m - l ) ( p  
m k n  

__~ , ( y .R (2 )  l do,, +Y.Z~wk, , , )s in(m-1)(p  ~2 - mn m ~ n V n dz Ic 

(2.9) 

-r ~,,, ~n + y.(Zm + ,--m~- 
k 

In the case of the axisymmetric problem (m = 1), solution (2.9) is identical with Abramyan's solution 

The representation of the displacement potentials in the form (2.5) and (2.9) predetermines the change 
of the boundary conditions into infinite systems of linear algebraic equations in the sequence of arbitrary 
constants. The free terms of the equations are the coefficients of the expansion of the stresses or 
displacements, specified on the boundary surfaces, in corresponding orthogonal systems of functions. 
The number of boundary conditions is equal to the number of sequences of arbitrary constants. When 
the system is truncated, i.e. on retaining the same number of terms with respect to each summation 
index, the number of unknowns corresponds to the number of equations. 

The regularity of the infinite systems obtained is proved for the special case of axisymmetric 
deformation of a circular cylinder in [15]. 

The general Papkovich solution can be represented in a similar way. To do this the harmonic vector 
B is written in the same way as the biharmonic vector G (2.1) 

B = ~l e~ + rot(~2ez) (2.10) 

after which the first vector equation of (1.4) changes into two scalar Laplace equations 

V 2 ¥ 1 : 0 ,  V 2 ¥ 2 : 0  (2.11) 

Substituting expression (2.10) into (1.5) we obtain the displacement vector in the form (2.4) if we 
introduce the notation 

F =  4(i--v)t--b-~-+z¥1 +@ (2.12) 

Although the functions F have a different form in the general Boussinesq and Papkovich solutions, 
the Laptacian of tt~ese futtct~otts is ttte same itt bottt gette~aI solutions, due m th~ fac~ t h ~  ~h~ v~xlam~ 
deformation 

A = d i v u = V 2 F + ~ z l  =_(I_2v)V2F= I - 2 v  t)ll/I 
2( ! -  v) Oz 
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is identical. The elementary rotation vectors 

w = rot u = rot(wue 2) + grad OW2 
Oz 

are also identical in both general solutions. 
The function ~1 in relations (2.10) and (2.12) is given by the first relation of (2.5), while the function 

• 2 is best written in the form 

q2 Z Y. 'vc2) 1 du,,, = ~ V  n "t" Z Z 7(2) | dura "~m - - - -  Wkra + Y. Y~ ,~c2), , "'ran V'W ln V n~ln 
m n ~[m dq )  k ra ~[m d(~ I n 

The function • can be obtained from qo I by replacing RO)mn, z(1)km, O(1)zn by R(°m ), Z (°)kin, ~o) respectively. 

3. R E P R E S E N T A T I O N  OF THE G E N E R A L  S O L U T I O N S  
IN S P H E R I C A L  C O O R D I N A T E S  

In dimensionless spherical coordinates p, 0, q~ (9, x, ~0, x = cos 0) the canonical body occupies a region 
formed by the intersection of the spherical surfaces p = Pl and p = P2 with the canonical surfaces 
0 = 01 and 0 = 02 (x = xl and x = x2) and the half-plane ¢0 = 0 and cp = CPo (Pa ~< P ~< 132, 01 ~ 0 ~ 02, 
0 ~< ~0 ~< cP0). 

The solid of revolution obtained by the intersection of the canonical and spherical surfaces 
(91 ~< P ~< 92, 01 ~< 0 ~< 02), and a hollow or solid sphere is also a canonical body. 

The splitting of the vector equation (1.2) into two scalar equations is due to the representation of 
the biharmonic vector G in the form 

G = P¥% + rot(p~¢,%) + grad ¥0 (3.1) 

Here ep is the unit vector coinciding with the direction of variation of the coordinate p, and ~, ~,  and 
• 0 are scalar functions of the coordinates. 

Unlike cylindrical coordinates, in spherical coordinates the analogy between (3.1) and the potential 
of the transverse waves in the stationary dynamic problem [13] is incomplete: in (3.1) an additional 
function ~0 has been introduced, which is a particular solution of the equation 

V2~l/0 = ---4~1/ (3.2) 

Substituting (3.1) into (1.2) we obtain 

V 2 V 2 ~ = O ,  V2V2~.  = 0  (3.3) 

By introducing the notation 

i - 2v I ~p (pw) = F, V2W, = ~1/2 (3.4) 
V2W = W" I - - " " ~  ~ 2(I - v )  

and substituting (3.1) into (1.3), we can write the displacement vector in the form 

u = grad F + pqtep + rot(p¥2ep) (3.5) 

Hence, the general Boussinesq solution in spherical coordinates, as also in cylindrical coordinates, 
reduces to a biharmonic equation (the first equation of (3.3)) and the Laplace equation 

V2~1/2 = 0 (3.6) 

The solution of these equations in spherical coordinates is constructed using the same scheme as in 
cylindrical coordinates, and is written in the form 

--(I) o ,.(I) W 

r a n  k r a  k I 
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~1/2 ~-,y. R(2) I dUmv v(2) I du m ,,~(2) . 

= il~kl Wklkl ""ran "~ km , . .  ~ , .  a~o , . . + X Z  wk+ZZ 

V = ~ . Z  (Rmn + R(o)" (0) (0) , . .  ju.p,.. + E Z  (x, , .  + X~,m )U,.Wk + Z E  (Ou + 4'kl )w,t~t 
m n  k m  k I 

(3.7) 

Here Um((p)  , Vmn(X) ,  W k ( P )  and tit(x) are orthogonal system of functions in the region occupied by the 
canonical body 

(m-1)~ r e= i ,2  .... Urn = cosp-m~0, IJ'rn = - - ,  
~0o 

a02 o = ~t + dp~v x ~t 
v~,. dr (x2)t'~ (x) ----~-( 2)Q,,(x) (3.8) 

and P~v(X) and Q~v(x) are the associated Legendre functions of the first and second kind of order lain 
and degree Vnm, respectively (the subscripts m and n are omitted for brevity). The degree Vnm is the 
nth eigenvalue of the Sturm-Liouville problem and is given by the equation 

dv m n  
dx (xl)=0" vl~=0,  o l t = l  

The functions Vn~(X) satisfy the orthogonality condition 

x2 

J u m,k' mt dx = O, 
xl 

n # l  

and, together with the functions urn, form an orthogonal system of functions on the spherical surfaces 
p = const (Xl ~< x ~< x2, 0 ~< ~0 ~< q~o), including the spherical boundaries p = Pl and p = 02. 

The function Wk(p) is given by the relation 

-=0:0 

The eigenvalues xi are given by 

(k - I)~ 
~, i ~/p)'n'P2"- I" k= l ,2 , .  

The function Wk satisfies the orthogonality condition 

P2 

S wkwtdP =0, k # l  
P; 

and, together with the functions urn, form an orthogonal system on the canonical surfaces x = const 
(Pl ~< P ~< P2, 0 ~< ~0 ~< ~00), including the conical boundaries x = Xl and x = x2. 

The function tit(x) can be written in the form 

tk! = dt2td (x 2 )tlkl(X) -- dtlkt (X 2 )t2kl(X) 
dr dr 

(3.10) 

Here 

tlkt = Re P~+iz(x), t2,l =ImP_/~÷iz(x) 

iX . 
where P-V2+i~ is the associated Legendre function of the first kind of imaginary order i~aa and complex 
degree -1/2 + iXk (i is the square root o f - l ,  and the subscripts I and k are omitted for brevity). 

The modulus of order ~ is the Sturm-Liouville eigenvalue and is given by the equation 
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dlkl 
dx (xl)=O' l=1,2 .... 

The functions tkl satisfy the orthogonality condition 

x2 I 
I tk,tk.l_-S-Z ax=o, 
Xl 

l ~ n  

and together with the functions wk form an orthogonal system on the half-planes to = const 
(Pl ~< P ~< P2, xl ~< x ~< x2), including on the plane boundaries tO = 0 and to = to1. 

When separating the variables in Laplace's equation, the third function 

"R(J)'ran -~" "'mnA(J)n + B~n - (v~ .  +1) 

= + 

o(J)  = E~{ ) expt-g,,(too - to)] + G~(P exp ( -~ , t t o )  kl 

corresponds to each pair of orthogonal functions. Here  Xlo n and X2gm are the particular solutions of 
the differential equation of  the cone function [16]. The relation between the functions Xlk~ and X2km 
and the associated Legendre functions is given by the expressions 

P_~l/~2+ix = Xik m -- X2k m 

It I Xl,ml+ilt( l_Lx2,,. _~Xl,m ) =-cosrq.t,.(--x2,., +± 
Q~-~+i, 4 ~a c a t ) 4 [a c 

-COS 2 ~ ( / - I . t , n ' ~ ]  , = c h  2 W~t _ s i n  2 ~(1-[tm~ ] ac=ch2•X' 2 [ 2 k z  JJ at 2 [ z k 7  , j  

obtained from the values of the associated Legendre functions on the "branch cut", i.e. for the real 
a rgument-1  < x < 1 [16]. 

The functions Xlgm and XEkm have the form 

2 °m n ~o "[rkm(P) x2p+r-I, Xrk,. = r =  1,2 (3.11) 
~/im(0)~/2km(0)(1 _ X 2)lj./2 r--- r ( r -  ~ + p)p! 

~lrkm(p)= R e r  2 r - !  1.1,,, ~'P+ ImF 2 
4 2 "2 ixk + + p + "2 txk 

where F is the gamma function. 
In the solution of the biharmonic equation the following third function corresponds to each pair of 

the same orthogonal functions 

Rm" = 2(2Vmn+3)(--2Vm,+l) P ~Xmn--2p3 dp ) 

Xk m = _p2 Yik~(O)Y2km(O) rc'O)t t X O) t"km~ T M  Ikm + JIX2km)+ Dmk(-J2XIkm + JX2km)] 

~kt = -P2 (  I -x2~  I ( I a,,o) d~°)'~ ' ~ - f f / - ~  ' ' ~ t  +to,.---kz 1 

J = ~ XlkmX2km dX, Jr = I X2rkm d~, r = 1,2 

where  A ~ ,  B ~ ,  "'km,("(J) ""ton,l)(J) L, klK'(J), "'klC'~'(J) kd(i = 0, 1, 2) are sequences of arbi t rary  constants .  
For a solid of revolution, bounded by spherical and conical surfaces (Pl ~< P ~< P2, Xl ~< x ~< x2), 

the conditions of  periodicity with respect to the coordinate to are satisfied if ~tm is replaced by 
m - 1  
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= m n - , n n  + ~Z*mw*m cos (m-  1)¢p 
?1 k 

11/2= m~/n ~ e(ml2vmn + ]~Z(k2)WkrnlSin(m--1)tPk 7 (3.12) 

]oos,. = (R,.. + !<,,, ~u m. a,,. )w,,. I)~p 
k 

In the general Papkovich solution the harmonic vector B is written by analogy with the biharmonic vector 
G (3.1) in the form 

B = p~lep + rot(pqz%) + grad ~o, (3.13) 

where ¥0 is the particular solution of the equation 

V2~0 = -2¥1 

When expression (2.13) is substituted into the first equation of (1.4), the vector Laplace equation 
splits into two scalar equations 

V2¥1 = 0, V2~2 = 0 (3.14) 

and the displacement vector u (1.5) takes the form (3.5) if we introduce the notation 

F = ~ °  4(I )~, 

Just as in cylindrical coordinates, the Laplacian of the functions F 

V2F=_2~g I I ~ (P~I) 
2(1 - v) ~p 

is common in the general Boussinesq and Papkovich solutions, as a result of  which the volume 
deformation A is identical in both general solutions 

I - 2 v  
A = d i v u  = - -  ( P ~ l )  

20 - v )  o~p 

The vector w of elementary rotation is also expressed by the same relation in the general Boussinesq 
and Papkovich solutions 

w = rot u = r o t ( p ~  lep ) + grad ~ p  ( P ~ 2 )  

4. T H E  B O U N D A R Y  C O N D I T I O N S  OF T H E  
S T U R M - L I O U V I L L E  P R O B L E M  

The eigenfunctionsym(X) (m = 1, 2 . . . .  ) of the Sturm-Liouville problem in the section a <~ x ~< b satisfy 
the boundary conditions [17] 

Oqyra(a)+O~2Ym(a ) = O, ~lYm(b)+~2Ym(b) = 0 (4.1) 

where ¢xl, ~2, ~1, [32 are constants, subject to the conditions 

l~il + Icxzl > 0, I1311 + ll~zl > 0 (4.2) 

Solutions (2.6), (2.7) and (3.8)-(3.10) of the Sturm-Liouville problems satisfy boundary conditions (4.1) 
when Ctl = 131 = 0, cz2 = [32 = 1. However, other combinations of the constants txl, 131, txz, 132 are possible. 
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It is appropriate to make the eigenfunctions of the Sturm-Liouville equation and the equation for 
the eigenvalues for arbitrary al ,  61, a2, 62 subject to conditions (4.2). 

I f  Ylm(X) and y2~(x) are two particular solutions of the Sturm-Liouville equation, corresponding to 
the eigenvalue ~.m, the eigenfunction ym(X) can be written in the form 

Ym (x)  = [fJl Y2rn (b) + ~J2Y2m (b)]Ylm (x )  - [6!Yt m (b)  + 62Y~,, (b)]Y2m (x)  

o r  

Ym(X) " , = [alY2r a (a) + a2y2, " (a)]ylm (x) - [a  t Ylm (a) + a2ytm (a)]Y2m (x )  

The equation of the eigenvalues takes the form 

at  fit [Ylm (a)Y2m (b) - Y2m (a)Ytm (b)] + at62 [Ytm (a)Y2m (b) - Y2m (a)Y~m (b)] + 

+a26t  [Yim ( a )Yzm ( b ) - Y2m ( a )Ylm ( b ) ] + a262 [Ylm ( a )Y2m ( b ) - Y2m ( a ) Y~m ( b ) ] = 0 

The choice of the combinations of  constants al ,  61, a2, 132 affects not only the eigenvalue spectrum 
and, consequently, the convergence of the expansions in e igen func t ionsym(X) ,  but also the order of the 
truncated system of linear algebraic equations for a constant number of retained terms. More frequently 
the combinations a I = 61 = 0, a2 = 132 = 1 and al  = 61 = 1, a 2 = ~2 = 0 are used. The latter combination 
is a necessary condition for changing to a rational form of boundary conditions in the z = 0 and 
z = Zo planes in cylindrical coordinates and on the spherical boundaries p = Pl and p = P2 in spherical 
coordinates [18]. 

5. C O N C L U D I N G  R E M A R K S  

The representation of the vector biharmonic potential of the displacements in cylindrical and spherical 
coordinates by relations (2.1) and (3.1) and the vector harmonic potential by relations (2.10) and (3.13) 
reduces the general Boussinesq solution to two scalar biharmonic equations (2.2) and (3.3), and reduces 
the general Papkovich solution to scalar Laplace equations (1.5), (2.11) and (3.14). Here the redundant 
generality of the general Boussinesq solution is partially eliminated, while that to the general Papkovich 
solution is completely eliminated. The complete elimination of the redundant generality of the general 
Boussinesq solution is due to the dependences (2.4) and (3.5) of the displacement vectors on the first 
biharmonic function (2.2) and (3.3) and on the Laplacian of the second biharmonic function. Hence, 
the general Boussinesq solution is reduced to a scalar biharmonic equation and the Laplace equation. 

The criterion of sufficient generality can be assumed to be the overall order of the differential 
equations of the scalar displacement potentials. If it is equal to 6, the number of sequences of arbitrary 
constants in (2.5) and in (3.7) is identical with the number of boundary conditions, namely, 18. In this 
case, when the infinite system is truncated, the number of unknowns is equal to the number of equations.. 

It should be noted that similar conversions of the general Boussinesq and Papkovich solutions can 
be carried out not only in a rectangular system of coordinates but also in elliptical cylindrical, parabolic 
cylindrical and conical coordinates [13]. 
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